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It is my great pleasure and honor to dedicate this paper to Professor Josef Paldus to celebrate his 70th
birthday. Dear Joe, while recollecting our encounters it just came to my mind that there may be one
more reason that 70 is a lucky number for celebrations. First, it was 40 years ago, in September 1965,
that for the first time we met each other on Kalatówki. Then, it was 30 years ago, also in September,
that we met again, this time on the other side of the “iron curtain”, in Strasbourg. By some
unorthodox arithmetics, this makes once again the lucky and unique number of 70. I cherish memories
of both these meetings and I am pleased and happy to contribute to this volume. Happy birthday!

The regular approximation methods for the reduction of the Dirac equation to a fully equiv-
alent two-component form are considered in the framework of the perturbation theory. The
usual Dirac hamiltonian is first transformed with the change of metric. Then, the change of
metric is considered as a perturbation to the zeroth-order (ZORA) problem. General formulae
for perturbation corrections to the ZORA wave function and energy are expressed solely in
terms of the two-component solutions. The method presented in this paper gives the energy-
independent scheme for the step-by-step generation of the infinite-order results which are
equivalent to solutions of the Dirac equations. Several formal and computational aspects of
the infinite-order regular approximation are discussed. It is concluded that, because of the
use of well-behaved operators, the high-order regular approximation methods can be consid-
ered as competitive to high-order Douglas–Kroll approaches.
Keywords: Relativistic methods; Regular approximation; ZORA; FORA; IORA; NESC method;
Metric perturbation theory; Quantum mechanics; Quantum chemistry.

The attempts to formulate relativistic quantum mechanics solely in terms
of two completely separable two-component theories, one for the so-called
positive eigenspectrum and one for its negative part1, are more than half a
century old2. For most of the relativistic chemistry problems one could
then focus on the positive energy solutions and this would make a fully rel-
ativistic theory for electrons only3. Such a reduced exact two-component

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Infinite-Order Regular Approximation 677

doi:10.1135/cccc20050677



relativistic theory would be of great advantage, both computationally and
conceptually4.

The renewal of interest in either accurate or exact two-component meth-
ods for relativistic quantum chemistry goes back to the middle of 1980s
when Hess5,6 proposed a very eficient way of handling the approximate
two-component relativistic hamiltonian of Douglas and Kroll7 (DK). This
was the beginning of what is nowadays referred to as the DK(DKH) method
with all its modifications and extensions4,8. These developments have re-
cently culminated in the formulation of the exact two-component relativis-
tic theory for electrons only9–11. In this context one should also give credit
to the important paper by Heully et al.12, who proposed a convenient oper-
ator method for the removal of the off-diagonal blocks of the Dirac
hamiltonian12. This method has been used by Barysz et al.13 to analyze the
structure of the DK approximation, and later, to carry out complete block-
diagonalization of the Dirac hamiltonian9–11.

Another important paper by Chang et al.14, which appeared about the
same time as the first papers of Hess5,6, went initially unnoticed. It was
only in the beginning of 1990s that Baerends, Snijders and their collabora-
tors15–18 independently proposed the same approach to the elimination of
the so-called small component in the Dirac bi-spinor. This method became
known as the zeroth-order regular approximation (ZORA) and was followed
by its extended (first-order) approximation (FORA)18. More recently Dyall
and van Lenthe have proposed the infinite-order (IORA) extension of the
regular approximation19 which is closely related to the earlier method of
the normalized elimination of the small component (NESC) developed by
Dyall20 and very recently picked up by Filatov and Cremer21.

The NESC approach which is expected to give the solution of the Dirac
equation in terms of the so-called large component only. In the form pro-
posed by Dyall20 and used by Filatov and Cremer21 the solution is obtained
in energy-dependent form. Alternative approach, which leads to energy-
independent matrix transformations, can be formulated in terms of the
metric perturbation expansion22,23. This form of the infinite-order two-
component method for electrons only, which is based on the idea of the
elimination of the small component20, will be discussed in the present
paper.
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THE ZORA EQUATION AS THE ZEROTH-ORDER OF THE METRIC PERTURBATION
APPROACH

To define the objective of our considerations we shall summarize some of
the basic ideas and equations of what is called the metric perturbation ap-
proach22,23 and the related developments by Dyall19,20. Most of symbols
used in this paper are either the same as those used by Dyall or closely fol-
low his notation19,20. At variance with the methods pursued by Dyall19,20

the present goal is to consider explicit perturbation approach to the indi-
rect determination of the Dirac bi-spinor.

Let us consider the electron moving in external Coulomb field of the po-
tential V (r). The stationary Dirac equation (in atomic units) is

H0� = E� , (1)

where the bi-spinor � is written in terms of the upper �L and lower �S
two-component vectors

� =
�

�
L

S







 (2)

and H0 is the usual Dirac hamiltonian1,4:

H0 = c�p + βc2 + (V –c2)I =
V c

c V c

1

1

�

�

p

p ( )−








2 2 (3)

with I (1) denoting the 4 × 4 (2 × 2) unit matrix and �p and β correspond-
ing to Dirac matrices1. The bi-spinor � is assumed to be normalized

〈�|�〉 = 〈�L|�L〉 + 〈�S|�S〉 = 1 (4)

with the norm of the upper (large) component assumed to be larger than
that of the lower (small) component. Upon transforming the initial bi-
spinor according to

� =
1 0

0 1
2 α�

�

�p













L

L

= S1/2� , (5)

where α = 1/c, the Dirac equation becomes

H1� = ES� (6)

with the new hamiltonian defined by
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H1 = S1/2H0S1/2 =
V T

T V T

1 1

1 11
4

2α � �p p –






 , (7)

where T = 1/2�p�p = 1/2p2 is the nonrelativistic kinetic energy operator.
The norm of � with respect to the new metric S, follows from

〈�|�〉 = 〈�|S|�〉 = 〈 �L|�L〉 + 〈�L|1
4 α2�p�p|�L〉 = 1 . (8)

This way of transforming the original Dirac equation by introducing the
pseudolarge component �L is analogous to the transformation introduced
by Rutkowski24–26 in what is known as the direct perturbation theory
(DPT)27,28. Hence, a similar approach can be used in the present case by ap-
plying the perturbation theory ideas to the matrix S. For this reason let us
consider the following perturbation partition of S:

S = S(λ) = S(0) + λS(1) , (9)

where

S(0) =
1 0

0 0






 , S(1) =

0 0

0 1
4

2α � �p p






 (10)

and λ is a formal perturbation parameter which orders the perturbation se-
ries and is set equal to either 0 or 1 whenever appropriate. The first-order
term with respect to λ will be considered as the perturbation to the zeroth-
order problem

H(0)�(0) = E(0)S(0)�(0) , (11)

where H(0) = H1 of Eq. (7) and

�(0) =
�

�
L

L

( )

( )

0

0









 . (12)

By writing Eq. (11) in the form of a set of 2 × 2 matrix equations20:

V T E� � �L L L
( ) ( ) ( ) ( )0 0 0 0+ =

T V T� � � �L L
( ) ( )–0 2 0 0+ 





=1
4

α p p (13)

one finds that the pseudolarge component �L
( )0 of Φ(0) can be determined as
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� � � �L L
( ) ( )0

2

2 01=
p

Bα p p , (14)

where B = (1 – 1/2α2V)–1. Its substitution into the first matrix equation in
(13) gives the familiar ZORA equation for � L

( )0 (refs15,17,22,23):

1
2

0 0 0� � � �p pB V E+





=L L
( ) ( ) ( ) . (15)

Moreover, according to Eq. (8) the normalization condition for �(0), i.e.,
through the zeroth-order in λ, reads:

〈 〉 = 〈 〉 =� � � �( ) ( ) ( ) ( ) ( )|0 0 0 0 0 1| |S L L . (16)

To summarize this survey of basic equations19,20,22,23 let us note that from
the point of view of the transformation (5) the ZORA approach can be con-
sidered as a method which actually follows from the elimination of the
small component. In the zeroth-order (with respect to λ) approximation
�(0) to the Dirac solution � the corresponding zeroth-order approximation
for its small component reads:

� � �S L
( ) ( )0 01

2
= α p . (17)

Hence, once the ZORA two-component wave function �(0) is determined,
one can easily obtain the zeroth-order approximation to the Dirac bi-
spinor. As shown in the next section, the metric perturbation approach can
be used to generate the Dirac solution of arbitrarily high accuracy.

INFINITE-ORDER SOLUTION BY THE METRIC PERTURBATION METHOD

Let us start with Eq. (6) which can be reorganized to the manifestly pertur-
bative form:

H(0)� = E(S(0) + λS(1))� . (18)

This suggests that both � and E can be expanded into power series in λ.

� = �(λ) = �(0) + λ�(1) + λ2�(2) + . . . (19)

E = E(λ) = E(0) + λE(1) + λ2E(2) + . . . (20)
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The same holds also for the large (�L) and pseudolarge (�L) components of �.

� � � � �L L L L L= = + + +( ) . . .( ) ( ) ( )λ λ λ0 1 2 2 (21)

� � � � �L L L L L= = + + +( ) . . .( ) ( ) ( )λ λ λ0 1 2 2 (22)

The zeroth-order terms in Eqs (19)–(22) are the solutions of the ZORA equa-
tion. In the n-th order (n ≥ 1) one obtains the following set of inhomo-
geneous equations:

( )( ) ( ) ( ) ( ) ( ) ( ) ( )V E T E En n n n r n r

r

n

− + = + −

=
∑0

1

� � � �L L L L (23)

T V T E pn n r n r

r

� � � � �L L L
( ) ( ) ( ) ( )+ −





= − −1
4

1
2

2 2 2 1α αp p
=

−

∑
0

1n

. (24)

One should note that the r.h.s. of these equations is fully determined by so-
lutions of the order lower than n and can be assumed to be available.
Hence, the n-th order pseudolarge component �L

( )n can be determined from
Eq. (24) in terms of some known functions and the n-th order large compo-
nent � L

( )n :

� � � � � � �L L L
( ) ( ) ( ) ( )n n r n r

r

n

p
B E

p
B= − − −

=

−1 1
2

1
2

2

2

1

0

p p p pα
1

∑ , (25)

which in turn can be substituted into Eq. (23), leading to:

( )( ) ( ) ( ) ( ) ( ) ( ) (h 0 0

1

21
4

− = +−

=
∑E E E Bn r n r

r

n
r� � � � �L L Lα p p n r

r

n
− −

=

−

∑ 1

0

1
) , (26)

where

h ( )0 1
2

= +� �p pB V (27)

is the two-component ZORA hamiltonian.
It appears to be instructive to write down the explicit form of Eq. (26) for

a few lowest values of n. For n = 1 we obtain:

( )( ) ( ) ( ) ( ) ( ) ( ) ( )h 0 0 1 1 0 2 0 2 01
4

− = +E E E B� � � � �L L Lα p p . (28)
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The first-order energy correction E(1) can be obtained by projecting this
equation onto 〈� L

( ) |0 . With the use of the zeroth-order normalization condi-
tion (16) this correction becomes

E E | B |( ) ( ) ( ) ( )1 2 0 0 2 01
4

= − 〈 〉α � � � �L Lp p . (29)

The second-order perturbed equation in its explicit form is given by:

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h 0 0 2 1 1 2 0 2 0 21
4

− = + +E E E E B� � � � �L L L α p p� L
( )1 +

+ −1
4

1
8

2 1 2 0 4 0 0 3 0α αE B E E B( ) ( ) ( ) ( ) ( )� � � � � �p p p pL L (30)

with the second-order energy correction E(2) evaluated as:

E E E | B |( ) ( ) ( ) ( ) ( )2 4 0 0 0 3 01
8

= 〈 〉 −α � � � �L Lp p

− 〈 〉 −1
4

2 1 0 2 0α E | B |( ) ( ) ( )� � � �L Lp p

− 〈 〉 − 〈 〉1
4

2 0 0 2 1 1 0 1α E | B | E |( ) ( ) ( ) ( ) ( ) ( )� � � � � �L L L Lp p . (31)

One should note that the second-order energy correction involves the
renormalization contribution E(1)〈 〉� �L L

( ) ( )|0 1 . This means that � L
( )1 must

satisfy the first-order normalization condition:

〈 〉 + 〈 〉 + 〈 〉� � � � � � � �L L L L L L
( ) ( ) ( ) ( ) ( ) ( )| |0 1 1 0 2 0 01

4
α | |p p = 0 (32)

which follows from the expansion of (8). This condition can be easily satis-
fied by supplementing � L

( )1 with a term proportional to � L
( )0 , i.e., with the

solution of the homogeneous counterpart of (28). The higher-order energy
corrections will obviously involve higher-order renormalization terms
which can be dealt with in the same way.

Another possibility to cope with the renormalization problem is to as-
sume the the so-called intermediate normalization condition for 〈�L|:

〈 〉 =� �L L
( ) |0 1 . (33)
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This condition will greatly simplify the handling of Eq. (26). However, to
recover the Dirac bi-spinor from solutions satisfying the intermediate nor-
malization (33) the a posteriori renormalization will have to be performed.
This will be particularly important in calculations of expectation values of
different property-related operators.

The process of generating perturbation corrections to the ZORA solution
� L

( )0 can be continued to higher orders in λ. In the n-th order one obtains
then a partial sum:

E n E E E n( ) . . .( ) ( ) ( )= + + +0 1 , (34)

which approximates the Dirac energy through terms of the order of α2N.
Because of the dependence of the B operator on α2, the partial sum (34) will
also contain some part of contributions from all higher orders in α2. Thus,
adding E(1) to the ZORA energy E(0) gives the approximate total energy
which is exact through the order of α2 (refs13,22,23). This is actually the
FORA energy15,16,22,23. In a similar way the partial sum E(2) will give an ap-
proximation to the Dirac energy which is exact through terms of the order
of α4 and contaminated by some contributions of the higher order in α2.
The E(2) expression is equivalent to the second-order regular approxima-
tion (SORA)13.

One should also mention that the approach presented in this paper is
closely related to the DPT method of Rutkowski and Kutzelnigg24–28. In the
present case, however, the only perturbation term arises from the change of
metric. In DPT the zeroth-order approximation corresponds to the two-
component Schrödinger equation known as the Levy–Leblond equa-
tion27,28. Thus, the DPT expansion starts from the nonrelativistic zeroth-
order level. In the case of the metric perturbation method, the zeroth-order
level, i.e., the ZORA approximation, includes some terms of infinite order
in α2. This can be considered as an advantage of the ZORA approach and
the metric perturbation method built upon it. On the other hand, there is a
certain disadvantage, since the ZORA and all finite-order RA approxima-
tions depend on the gauge of the Coulomb potential18.

In the sense of its strategy, the present metric perturbation approach is to
some extent similar to the development of the n-order methods (DKn)
based on the DK approximation8. Starting from some initial approximation
one tries to improve upon it by completing the theory through a certain or-
der in α2. In the case of the DK approach, the numerical solution of the
infinite-order is feasible4,10,11 and leads to the complete separation of the
electronic and positronic spectra.
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In two-component methods based on the DK scheme, the major profit
comes comes from the initial unitary transformation of the Dirac hamil-
tonian by the free particle Foldy–Wouthuysen matrix4,7,13. However, this
transformation involves some not-too-well defined operators, e.g., square
roots of expressions involving the p2 operators, which may lead to ill-
behaved energy dependence on α2 (refs3,29,30). Although these operators can
be efficiently dealt with by using the approximate identity resolution into
states which diagonalize the p2 operator, the problem remains and is likely
to be responsible for the odd behavior of the n-th order DK approximations
for certain values of n (e.g., for n = 4, 5)8,11,31,32.

The metric perturbation method profits from the initial change of metric
(5) which, in the sense of the metric perturbation method, gives the ZORA
method as the zeroth-order approximation. First, by virtue of the transfor-
mation (5), the zeroth-order approximation automatically satisfies what is
called the kinetic balance condition20. Second, the operator B, which ap-
pears in the ZORA hamiltonian and then enters all perturbation correc-
tions, is manifestly nonsingular and well-behaved18. Hence, some of the
formal problems of the DK(n) methods can be avoided in the metric pertur-
bation approach3.

There are also some negative aspects of the initial zeroth-order approxi-
mation used in the metric perturbation approach. It is known18 that the
ZORA approximation suffers from the gauge noninvariance of the electro-
static potential. This gauge dependence is, however, strongly diminished al-
ready in the FORA method and will be further reduced on introducing the
higher-order corrections.

Finally, it is worthwhile to stress that the metric perturbation method is
fully expressed in terms of two-component functions. Once some suffi-
ciently (numerically) accurate approximation to �L is obtained, the bi-
spinor solution can be generated by the inverse transformation and used to
calculate other than energy properties of the given system. Such a method
would be free of what is known as the change of picture of the correspond-
ing property-related operators33–36. Equivalently, one can express the opera-
tor expectation values explicitly in terms of �L. Then, however, the opera-
tor must undergo the appropriate transformation34. Which of the two
routes to obtain the expectation values is easier depends on its computa-
tional implementation. Nevertheless, claiming that methods, which express
the Dirac solution solely in terms of its large component, are free of the
change of picture problem is not quite correct21.
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COMMENTS AND CONCLUSIONS

Following the ideas of the metric perturbation approach22,23 with the ZORA
equation as the zeroth-order approximation, a compact form of the corre-
sponding theory has been presented and discussed. Though at the first
sight the basic equation to be solved, i.e., Eq. (26), may look forbidding, its
solution can be generated iteratively by using some selected set of (two-
component) basis functions18–20,37. The easiest way is to use the reduced
resolvent operator defined in terms of two-component states which
diagonalize the ZORA operator (27). This technique is commonly used in
many-body perturbation methods38 and can be conveniently employed to
obtain matrix approximations to the solution of Eq. (26). The algebraic ap-
proach to the order-by-order solution of Eq. (26) can be continued until the
desired accuracy is achieved. In this sense the theory presented in this pa-
per can be regarded as the infinite-order method which generates the Dirac
solution of the desired accuracy. This is exactly the same meaning of infin-
ity as used in the case of the IORA 19 and the infinite-order DK methods10,11.

At variance with the IORA and NESC methods considered by Dyall19,20

the metric perturbation approach does not depend on the total energy. The
r.h.s. of Eq. (26) solely depends on the data available from the lower-order
solutions. This is the advantage of using the perturbation approach rather
than the energy-dependent iterative method. Moreover, the present formal-
ism permits step-by-step study of different finite-order regular approxima-
tions. The ordering of the perturbation series follows from Eq. (9).

The theory developed in this study was presented for one-electron solu-
tions. Its extension to many-electron problems can be accomplished in the
same way as in the case of other ZORA-based methods18–20,37. The most
likely implementation of the present scheme will be in the framework of
the Dirac–Coulomb approximation.

On comparing the DK and ZORA-type methods one finds several similari-
ties, though there are significant differences as well. Both these approaches
can be made into infinite-order methods for the generation of Dirac bi-
spinors. In both cases one tries to express these bi-spinors solely in terms of
the large component. Although the earlier IORA and NESC methods and
the present perturbation approach do not attempt to explicitly block-
diagonalize to Dirac hamiltonian, all of them try to reduce the computa-
tional task to two-component formalism. The infinite-order DK approach
leads to the complete block-diagonalization of the Dirac hamiltonian and
the corresponding two-component solution is obtained without explicit
reference to the small component part of the Dirac bi-spinor. Once the iter-
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ative solutions in the infinite-order DK method and in the present metric
perturbation approach are well enough converged, there is no difference
between the two; both of them will generate the Dirac solutions. However,
there may be some important difference between finite-order DK and met-
ric perturbation methods. From this point of view the approach based on fi-
nite (low) order approximations to the metric perturbation approach may
offer certain advantages because of the well-behaved character of the B op-
erator. As exemplified by the success of the low-order RA methods18,19 the
finite-order metric perturbation schemes can be considered as competitive
to higher-order DK approximations.
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